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Propulsion of a foil moving in water waves 
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Propulsion of a foil moving in the water close to a free surface is examined. The foil 
moves with a forward speed U and is subjected to heaving and pitching motions in 
calm water, head waves or following waves. The model is two-dimensional and all 
equations are linearized. The fluid is assumed to be inviscid and the motion 
irrotational, except for the vortex wake. The fluid layer is infinitely deep. 

The problem is solved by applying a vortex distribution along the centreline of the 
foil and the wake. The local vortex strength is found by solving a singular integral 
equation of the first kind, which appropriately is transformed to a non-singular 
Fredholm equation of the second kind. The vortex wake, the forward thrust upon the 
foil and the power supplied to maintain the motion of the foil are investigated. The 
scattered free surface waves are computed. For moderate values of U g / g  (U is 
forward speed of the foil, cr is frequency of oscillation, g is acceleration due to gravity) 
it is found that the free surface strongly influences the vortex wake and the forces 
upon the foil. When the foil is movingin incoming waves it is found that a relatively 
large amount of the wave energy may be extracted for propulsion. As an application 
of the theory the propulsion of ships by a foil propeller is examined. The theory is 
compared with experiments. 

1. Introduction 
Recently, various experiments have been performed in order to examine the 

possibilities of utilizing the energy in ocean waves for propulsion of ships (Jakobsen 
1981), Isshiki, Murakami & Terao (1984). One or two hydrofoils have been fixed to 
the ship. When the ship is heaving and pitching in incoming waves, head waves or 
following waves, the hydrofoils will also perform a heaving motion. Since the ship 
(and the foil) is moving forward, the heaving of the foil will produce a forward thrust 
on the foil, and the foil will act as a propeller. This is easily seen to be true for a deeply 
submerged foil performing a low-frequency heave motion. In  this case the total force 
on the foil from the fluid is approximately equal to the lift, and the horizontal 
component of the force gives a forward thrust in both upward and downward 
motion. 

In  a pure heaving motion, however, the angle between the foil and the path of the 
foil, the angle of attack, may easily be so large that stall occurs. To avoid stall it may 
therefore be necessary that the foil also performs a pitch motion. This is obtained in 
the experiments referred to above, by an arrangement of springs. The introduction 
of a pitch motion has another effect. Assuming that stall does not occlir, we shall see 
that a combined heave and pitch motion usually leads to a larger efficiency, but 
smaller thrust, than for pure heave motion. 

In  the present paper we shall be concerned with evaluating mathematically the 
propulsion of a moving, oscillating foil, sited close to a free surface. It will be assumed 
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that  the aspect ratio is large, so that  the problem may be considered as two- 
dimensional. The foil is assumed to be thin, to have a small camber and to be near 
horizontal, so that  the oscillating part of the fluid motion may be approximated by 
flow around a thin, horizontal flat plate. 

All the equations will be linearized. The corresponding problem with a moving foil 
oscillating in an unbounded fluid, was studied thoroughly in 1934 (von Karman & 
Burgers, 1934). Specially relevant to our problem is a series of papers by Wu (1961, 
1971a, 6 )  on the hydromechanics of swimming propulsion where the optimum 
oscillating motion of a two-dimensional flat plate is studied. In  a later paper Wu 
(1972) considers the effect of surface waves on a moving, flat plate performing 
heaving and pitching motions. His theory is approximate since the effects of the free 
surface upon the foil are neglected. According to his own estimates, his theory is a 
good approximation if the plate is situated more than twice the chord beneath the 
free surface. Important also is a work by Lighthill (1970) on aquatic animal 
propulsion, where he introduces the useful concept of the feathering parameter. 

The presence of a free surface complicates the problem considerably. In  an 
unbounded fluid the horizontal thrust equals the mean momentum transport in the 
vortex wake formed behind the foil. Correspondingly, the wasted energy is solely due 
to the wake. When a free surface is present, and the foil is sited relatively close to the 
surface, the generated surface waves may transport a considerable amount of 
momentum. This momentum transport may be positive or negative, leading to an 
increase or decrease in the thrust, depending on the properties of the generated 
waves. The waves always give rise to a considerable amount of wasted energy. 
Surprisingly, it is found that the total energy waste, composed of waste by the wake 
and the waves, is nearly independent of the submergence of the foil for moderate and 
large forward speed. This is not true for the value of the thrust. It will also appear 
that the effect of the free surface is most pronounced for Uo/g  < a (U is the speed of 
the foil, IT is the frequency of oscillation, and g is the acceleration due to gravity). 

Incoming waves are also accounted for. We shall assume that the period of these 
waves and the period of the oscillations of the foil are the same. The incoming waves 
then introduce two new parameters to the problem, viz. the amplitude and phase of 
the waves. The foil may in this case extract a considerable amount of energy from 
the waves. We find for example that the thrust may be doubled while the power 
supplied to the foil reduces to zero when the vertical velocities of the foil and the 
wqve field a t  the foil are of the same magnitude. The largest extraction of energy is 
found for incoming following waves and small values of U g l g .  It is found that up to 
75% of the incoming wave energy may be utilized for propulsion. 

Sections 2 and 3 concern the mathematical formulation of the problem. The fluid 
flow is expressed by a distribution of vortices along the foil and the vortex wake. The 
vortex strength is determined by an ordinary Fredholm equation of the second kind, 
which is solved by a collocation method as discussed in 94. In 995 and 6 the impact 
of the free surface is discussed, for no incoming waves and incoming waves, 
respectively. In  the latter section, the theory is applied to the study of the 
propulsion of a ship by a foil propeller. The example chosen is a ship of length 40 m 
moving in long head waves of amplitude 0.5 m. The foil area is 8 YO of the waterplane 
area of the ship leading to a forward speed of 8 knots. Finally, in 98 we compare the 
thrust found by the present theory with the experiments by Isshiki et al. (1984). Also 
the approximate theory of Isshiki (1982) and the present theory are compared. 
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FIGURE 1. Definition sketch. 

2. The boundary- values problem 
We shall assume that the hydrofoil has a small camber and angle of attack. The foil 

is also assumed to be thin, though sufficiently rounded at the leading edge to keep 
the flow from being separated there. For the oscillatory part of the flow the effects 
of camber and thickness are then only secondary, and the foil may mathematically 
be replaced by a flat plate. Furthermore the amplitudes of the oscillations of the foil 
and the amplitudes of the incoming waves are small. Hence, the boundary conditions 
a t  the free surface and a t  the foil may be linearized, even if the foil is placed relatively 
close to  the free surface. 

Let coordinates be taken with the origin in the mean free surface of the fluid. The 
x-axis is horizontal and the y-axis positive upwards, see figure 1.  The fluid is assumed 
incompressible and the motion irrotational. Considering the problem from the frame 
of reference fixed to the mean position of the foil, the water flows with a horizontal 
speed U along the negative x-axis. The fluid velocity may then be written 

v = V4-Uex ,  (2.1) 

vq5 = 0. (2.2) 

vq5 + 0, y + - co. (2.3) 

where q5 is a velocity potential and ex is the unit vector along the x-axis. q5 satisfies 
the two-dimensional Laplacian 

We shall consider a fluid of infinite depth. The boundary condition at y = - co is 
then 

The boundary condition a t  the free surface may be written 

where t denotes time. 

condition a t  the body is then 
Let [(x, t )  denote the vertical displacement of the plate. The kinematic boundary 

where 21 and d are the chord length and depth, respectively. 
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In  the case of an incoming wave the potential is properly divided into two 

(2.6) 
parts 

where $,, is the (known) potential of the incoming wave. The boundary condition (2.5) 
then takes the form 

$ = $ O + $ l ,  

(2.7) ?h = ( ~ - - U ~ ) < - ~  (y = -d,(xl < 1). 

We shall assume sinusoidal time dependence with period 2zla. Introducing complex 
variables, we write 

(2.8) 

aY aY 

$ = Re VJz) cos d + f , ( z )  sin 4, 

where z = x+iy, (2.9) 

i is the imaginary unit. f,(z) and f,(z) are analytic functions of z .  Equation (2.8) may 
be written in shorter notation by introducing a new imaginary unit j ,  independent 
of i and connected to the time variable so that 

$ = Rej Re,f(z) exp ( j d ) .  (2.10) 

Here Re, and Rej denote the real part with respect to i and j ,  respectively.f(x) is given 

Corresponding to (2.10) we write 

(2.12) 

with f ( z )  = f o  (4 +fi (4, (2.13) 

f , ,  ( 2 )  is the known complex potential for the incoming wave andf, ( z )  is the unknown 
complex potential due to the presence of the foil. 

Finally, a t  the trailing edge the Kutta condition is applied, ensuring that the 
velocity is finite a t  this point. Also, a t  x = f 00 the radiation conditions must be 
satisfied. 

3. The integral equation 
To derive an integral equation for the motion we express fi ( 2 )  as a continuous 

distribution of vortices. The velocity circulation around the foil will oscillate in time 
due to  the periodic motion of the foil or the harmonic incoming waves. Hence, 
vortices will be shed at  the trailing edge, and a vortex wake will be formed behind 
the foil, extending from the trailing edge to x = - 00 as time goes towards infinity. 
In the first approximation the wake may be considered to be located along the 
line y = -d .  f l  ( z )  is therefore expressed as an integral from x = - co to  x = 1. Let 
G(x, xo) denote the complex potential for a vortex of strength unity located at z = zo. 
G(z , z , )  fulfills the boundary condition a t  the free surface, the radiation conditions a t  
z = _+ co and (2.3) a t  y = - co. G ( z ,  zo) is therefore a Green function. fi ( z )  may then 
be written 1 

fi(4 = s_mY(5)( :  (%5-i4d5.  (3.1) 

Here y ,  which is unknown, is real with respect to i. This is to secure that the boundary 
condition a t  y = 0 and the radiation conditions are satisfied. y is, however, complex 
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in j being of the form y = y1 + j y z  where y1 and y z  are real. G(z ,  zo)  may be derived by 
an analogous procedure as used by Haskind (1954) in deriving the Green function for 
a source. It is found that 

(3.2) 
1 

G(z,zo) =-on 2n1 (~ -zo ) -g (~ , zo ) l ,  

g(z ,zo )  = -ln(z-.Zo)----- 1 [ F l ( Z ,  4 - F ,  (z,50)1-___ 1 [F3 ( z , z o )  - F ,  (2, z0)l. 

where g ( z , z o )  is non-singular in the fluid and given by 

1-ij 1 +i j  
(1 - 47)s (1 +4r)5 

(3.3) 

Here F ,  (2 ,  zo)  = exp (-ik,z) du (n = 1 ,2 ,3 ,4 ) .  (3.4) 

A bar denotes the complex conjugate, and C ,  is defined by 

c, = 00 (n=  1,3 ,4) ,  C,=-CO 

C, = i c o / k ,  (n = 1,2),  C, = 00 (n  = 3,4)  (r >$). 

Furthermore k l , 2  = 

1, 
it3,4 = -[1+2r+(1+4r)f], 

2r2 

where (3.7) 

The function f 1 ( x ) ,  given by (3.1), satisfies for every y all boundary conditions 
except the kinematic boundary condition at  the body (2.7) and the Kutta condition 
a t  the trailing edge. 

To determine y such that these two conditions are also fulfilled we first introduce 
the velocities u and z1, defined by 

where we have applied (2.13). It is seen from (2.10) that u and v are related to the 
real velocity by 

- = Rej u exp (jcrt), 

= Rej v exp (jat). 
(3.9) 

ax 

aY 
Introducing (3.1) into (3.8) we obtain 

(3.10) 

To apply the boundary condition a t  the foil, we let x ---f x - id from below and above. 
The Plemelj formula then gives 

dfo aG 
dz lrn az 

u-iv  = - + y(5)- (z,(-id) d t + b ( x )  ( z  = x- id ,x  < 1).  (3.11) 
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Here ' + ' and ' - ' correspond to z --f x-id from below and above, respectively, and 
the bar through the integral sign indicates the principal value. 

Equation (3.1 1 )  contains two equations. Since the velocity circulation around the 
foil is non-zero, u has different values on the upper and lower side of the foil. v,  on 
the other hand, has the same value on both sides. Substracting the two equations in 
(3.11) from each other, we find that 

y = Au, (3.12) 

where A denotes the difference between the lower and upper value along the cut 

Equation (3.12) identifies the physical meaning of y, but does not help us to 
calculate the value since Au is unknown. An equation for determining y is obtained 
by taking the imaginary part with respect to i of (3.11) for 1 x /  < 1. This gives 

- c o < x < I ,  y = - d .  

dfo aG 
y(5) Imi-(z,[-id) d[ ( z  = x-id), 1x1 < I). (3.13) 

az 

For 1x1 < I, v is known from the boundary condition (2.5) and (3.9) where 5 is 
known. We see that 

Rejvexp (jd) = --U- 5. (3.14) 

Since (3.13) is only valid for 1x1 < 1 and y is unknown in the interval 
< - 00,  -1 > , additional information about y is needed. This is obtained by noting 
that the vorticity in the wake is conserved. Hence, 

( i t  :x) 

which has the solution 

A - ( x , ~ )  a# = A-(x+Ut) a# (-00 < x < - I ) .  
ax ax 

From (3.9) and (3.12) 

y = yo exp ( jkx)  ( -  00 < x < -Z) ,  

(3.15) 

(3.16) 

(3.17) 

where yo is complex with respect to j .  I% is the reduced frequency given by 

k = u / U ;  (3.18) 

y is therefore known in the wake, except for the amplitude yo. To obtain yo we set the 
amount of vorticity which is shed a t  the trailing edge per unit time. - URej y( -1) 
exp (jcrt), equal to the rate of change of the velocity circulation around the foil. Let 

= s_, Ydt. (3.19) 
r be defined by 2 

We then have, according to (3.9), (3.12) and (3.17), 

jvr= -Uy(-1) = -Uyoexp ( - jk l ) ,  (3.20) 

(3.20) associates yo with r. The latter will be found by applying the Kutta condition 
a t  the trailing edge. 

Considering for the moment yo as known and applying (3.17), (3.13) is a singular 
integral equation of the first kind which determines y in the interval < -1, 1 > . This 
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integral equation may easily be transformed to a Fredholm equation of the second 
kind, which is convenient for numerical solution. This is obtained by writing (3.13) 
in the form 

f r o d [  = - H ( x ) - F ( x ) ,  
- 1 X - 6  

(3.21) 

where H ( x )  = -27c1rni--2nv dfo ( z  = x-id), (3.22) 
dz 

with K(z ,  6) = Re,-(z, a9 c-id) ( z  = 2-id). 
a2 

(3.24) 

If the foil is sufficiently deeply submerged, K ( x ,  6) may be neglected. The equation 
then describes the unsteady hydrofoil problem in an unbounded fluid. Considering 
for the moment the right-hand side of (3.21) as known, the solution of the equation 
is (see Newman 1977, p. 182) 

(3.25) 

Prom residue calculation we obtain 

By using- (3.26) and (3.20) we find after some algebra that (3.25) may be written in 
the form 

Here the tilde defines the transform 

(3.27) 

(3.28) 

Furthermore, K(X) = ( E 2 - X 2 ) ~ y ( X ) ,  (3.29) 

and (3.30) 

For numerical purpose P(x)  may be considerably simplified, see Appendix A. 

y(-Z) to  be finite, and applying (3.27) and (3.29), we find 
To close the problem we apply the Kutta condition a t  the trailing edge. Requiring 

(3.31) 

Replacing yo in (3.27) with (3.31) we finally obtain 

which is the governing integral equation for the problem. 
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It may be worth mentioning that in the derivation of (3.27) we have-in 
opposition to what seems to be standard in similar derivations in related problems 
- brought the infinite integrals on a form which imply that they exist in the ordinary 
sense, without any artificial viscosity. This is obtained by applying Kelvin's theorem 
in the form (3.20) and not splitting the two terms on the right-hand side of (3.26). 

4. Numerical solution 

introduced by 
The integral equation (3.32) is solved by a collocation method. New variables are 

x=Zcost,  f ;=lcoss ,  r=Zcosr  ( t , s , r E < O , n > ) .  

The t-interval < 0 ,  n >  is subdivided into N equal segments. In this manner a fine 
subdivision is obtained close to the leading and trailing edges where variations in K 

are stronger than a t  the middle of the chord. The unknown K is assumed constant a t  
each segment. A set of N x N equations is then obtained by fulfilling the integral 
equation a t  the points t ,  = (n -+) z/N, n = 1,2, . . . , N .  The integrals of the kernel over 
each segment are calculated by applying two-point Gauss quadrature. Since any 
symmetric integration rule may be applied to the principal value integral (3.28), even 
with the substitution x = 1 cost, 5 = 1 coss, we also calculate this integral by two- 
points Gauss quadrature. In  all calculations presented N = 25 is applied, giving an 
accuracy of 1% or better. As a check of the computations the wasted energy is 
calculated by (5.6) and by far-field analysis (5.17). 

5. Discussion of the results. No incoming waves 
We assume no incoming waves in this section. The foil is performing a heaving 

motion with amplitude h, a pitching motion with maximum angle a and there may 
be an arbitrary phase between these two motions. Instead of using these three 
parameters we find it appropriate to follow Lighthill (1970) in writing the vertical 
displacement of the foil in the form 

C(x, t )  = Rej [h+ ja(z-b)] exp (jd). (5.1) 

In this notation x = b is the location of the pitch axis and h denotes the (positive) 
heave amplitude of the pitch axis. a denotes, as above, the maximum angle of the 
pitch motion and may be positive or negative. In this representation the heaving and 
pitching has a specified phase lag of 90°, whereas the location of the pitch axis is 
unknown. 

The oscillating foil will generate surface waves with frequency g. At large distances 
from the oscillating foil the waves will be sinusoidal waves with wavenumbers k,, 
k,, k,, k, defined by (3.6) (for a discussion of the waves, see for example Grue & Palm 
1985). For 7 = Ug/g less than f, all four waves will be generated, for 7 larger than 

only the k, wave and k, wave will be generated. The k, wave and k, wave have 
positive phase velocities. The k, wave has also positive group velocity whereas the 
k, wave has negative group velocity. The k, wave will therefore be located upstream 
and the k, wave downstream. The k, wave and the k, wave have negative phase and 
group velocities, and are located downstream. The phase velocity of the k, wave is 
less than U whereas the phase velocity of the k, wave is larger than U .  In the frame 
of reference where the current is zero, both the k, wave and the k, wave have positive 
phase velocities larger than U .  The k, wave has group velocity less than U whereas 
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the k ,  wave has group velocity larger than U .  The k,  wave has positive phase velocity 
smaller than U ,  and the k,  wave has negative phase velocity. 

The wave elevation a t  x = _+ 00 will be composed of waves of the form 

The amplitudes a,  are derived in Appendix B and are found to be 

For r > i, both a, and a2 are zero. Apparently a, and a, tend towards infinity as 
7 -+a. It may be argued and the numerical solutions show, however, that a1 and a, 
tend towards a finite limit as 7-a.  The same result was found for a submerged 
circular cylinder by Grue & Palm (1985) and for a submerged elliptic cylinder by 
Mo & Palm (1987). 

In  the discussion of the results and comparison with experiments we shall apply 
the energy equation in the frame of reference where the current is zero (the foil 
moving with velocity U ) .  To maintain the prescribed motion there must be an 
external force providing the necessary rate of work, the power. The mean power P 
is here given by 

where A p  is the pressure difference between the lower and upper side, and the bar 
denotes time average. The energy equation, averaged in time, may be written 

P = TU-+E. (5.6) 

Here T is the mean thrust acting upon the foil in the x-direction, and E is the mean 
wasted energy due to the wake and the scattering of surface waves. 

It is of interest to note that the mean thrust is composed of two terms, here 
denoted by p, and T p  so that 

T = Tsi -Tp .  (5.7) 

T ,  is a suction force acting a t  the leading edge and is due to the fact that the velocity 
in our model here is infinite. In a more realistic model with a rounded leading edge 
the velocity will be finite, but fast. Also in this model there is a suction force, given 
approximately by (5.10). The suction force may be found by applying Blasius 
formula to a small circle of radius c surrounding the leading edge. The suction force 
is then given by 

[Rej ( f ; ( x )  exp (jrt))], dz, (5.8) 
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where p is density and fi (2) is given by (3.1). Only the part of fi ( z )  which is singular 
for z+ I ,  gives contribution to  (5.8). We find that 

Introducing (5.9) into (5.8) gives 

(5.10) T,  = KP -[Rej ( K ( Z )  exp (jd))]'. 
81 

The other term p,, is due t o  the pressure difference along the foil and may be called 

Introducing the notation 

where L is the pressure force perpendicular to the plate, we have 

(5.11) 

(5.12) 

(5.13) 

To obtain a formula for the last term in (5.6), the mean wasted energy, we first 
consider the waste due to the wake. This waste is manifested by the wake being 
increased a length per unit time equal to U .  The mean wasted energy is therefore 
equal to the energy density of the vortex wake multiplied by U .  The velocity field 
generated by the wake (in the frame of reference where the foil moves with speed U )  
is given by 

q51(x,y) =-IYolexp ( - k d )  cosh(ky)sin(kx+ argy,) (y>--d), (5.14) 

(5.15) 

k 

k 
l r o l  q51(x,y) = -sinh(kd)exp(ky)sin(Lx+ argy,) (y < -d ) ,  

(5.14) and (5.15) lead to a mean waste of energy equal to 

(5.16) 
1 

-pUI yo I * [i -exp ( - 2 k d ) l .  
8k 

Correspondingly, the generated wave trains are increased a length per unit time 
equal t o  ) c g n - U  1 (n = 1, 2, 3, 4) where cgn is the group velocity. The mean waste of 
energy per unit time due to  the waves is therefore equal to I cSn - U I En where E n  
( n  = 1, 2, 3, 4) is the wave energy density. We thus obtain 

with 

and 
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It is seen from (5.14) that the effect of the wake is not felt directly a t  the free 
surface since the vertical velocity as well as the pressure due to the wake here is zero. 
We also mention that the wavenumber k in the wake is never equal to kn (n = 1, 2, 
3, 4) ,  except for the singular case r = 2. We therefore obtain no kind of resonance 
between the periodic wake and the waves. 

Corresponding to the wave energy loss, there is change in the momentum due to 
the waves. This change of momentum per unit time leads to a thrust on the foil, 
T,. The contributions from the various waves are obtained by dividing the respective 
energy losses with the phase velocity (see for example equation (4.24) in Grue & Palm 
1985). T, is given by 

(5.20) 

It is seen that the k ,  wave, the k ,  wave and the k3 wave which all propagate in the 
positive x-direction, give rise to a negative thrust. The k4 wave which propagates in 
the negative x-direction, contributes to a positive thrust. The total thrust is 
composed of T,  and the thrust due to the wake. The latter seems, however, 
impossible to  evaluate directly. 

I n  displaying our results it is appropriate to give the thrust, for example, in the 
non-dimensional form T/pgh2.  This dimensionless thrust depends on five dimen- 
sionless parameters which may be chosen as d l l ,  U/ (g l ) i ,  bll,  a21/g, aU/ah. Here 
U / ( g l ) ;  is a Froude number and will be denoted by Fr. The parameter olU/vh 
provides a measure of the relative magnitude of pitch and heave and is denoted as 
the feathering parameter 8 by Lighthill (1970). We have 

(5.21) 

It is noted from (5.1) that 0 is the ratio between the instantaneous pitch angle 
-a sin at and the instantaneous gliding angle - a, sin at .  For low frequencies and the 
foil deeply submerged, the total force on the foil from the fluid is equal to the lift. I n  
this case we obtain negative thrust if the pitch angle is larger than the gliding angle, 
i.e. 8 > 1. This motivates us to consider only values of 0 smaller than unity. In  the 
analysis we have assumed that stall does not occur. There is, in general, no simple 
criterion for deciding whether or not stall occurs for an oscillating foil. However, for 
small frequencies, the instantaneous angle of attack, which reads 

-a, sin at+a sin at = -a, (1 - 0) sin at, (5 .22)  

must be small for avoiding stall. Also, if the foil is deeply submerged, it is easily found 
that 

(5.23) 

Hence, stall is avoided if either a, is small or T,/T is small. For higher values of a 
Lighthill (1970) has suggested that stall may occur if T,  is too large compared with 
the total value of T. This will happen if the sideforce is large and gives a negative 
contribution to the thrust. I n  displaying our results we shall therefore try to avoid 
values of the parameter leading to such values of the sideforce, and also in some cases 
give the value of Ts together with T .  

With as many as five non-dimensional parameters in the problem, space limitations 
only permit us to display the results of some few values of each parameter. I n  the 
comparison with experiments in $ 7  we have of course to choose the values used in the 
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FIGURE 5.  Values of thrust and efficiency vs. u2Z/g for various values of submergence of the foil. 
Foil oscillating in heaving motion in calm water. Fr = 0.25, 19 = 0 ,  d / l  = 0.5, 1, 3, 00. (a )  T/pgh2, 
( b )  TUIP.  

experiments. I n  $55 and 6 we have chosen d / l =  0.5, 1, 3, co and Fr  = 0.25, 1, 5. 
Furthermore, 8 is given the values 8 = 0 and 8 = 0.6. 8 = 0 usually gives a large 
thrust, but small efficiency. 8 = 0.6 gives in general smaller thrust, but considerably 
higher efficiency. b / l  is chosen as -0.5, 0 or 0.5. Smaller values of b / l  give very high 
values of TJT. 

The figures are displayed with a21/g as abscissa which varies from 0 to 1.5. For larger 
values of u21/g the variation of the thrust and wasted energy is rather monotonous. 
In  figures 2, 3 , 4  and 5 , 8  is zero, i.e. the foil is performing a pure heaving motion. It is 
seen from the figures that the effect of the generated waves are important. Thus the 
energy waste due to the waves, E,, may be the dominant part of the waste. We note that 
E ,  is about 60 YO of the total energy waste for Fr = 0.25 and almost the total energy 
waste for F r  = 5. The thrust due to the waves, T,, is found to be negative for 
r < a since the k, and k, waves then are the dominating waves. T ,  becomes, however, 
positive when the k, wave is the most pronounced of the radiated waves which occurs 
for T > t ,  and small and moderate values of the Froude number, as seen in figures 2 
and 3. For larger Froude numbers the k, wave is the dominating one and T, becomes 
negative, as shown in figure 4. A remarkable feature for the energy waste is shown 
in figures 3 and 4 for Fr = 1 and 5, respectively. It is seen that the curves for the 
energy waste are almost identical for d / l  = 1 and d / l  = co, in spite of the fact that 
the energy waste due to the waves is significant for d / l =  1. This paradox is most 
pronounced for Fr = 5 where for d / l  = 1 the energy waste due to the waves is indeed 
by far the most important part of the total energy waste. 

The effect of the submergence of the foil is shown in figure 5 for Fr = 0.25. We 
notice that the thrust and efficiency have local maxima when the foil is sited very 
close to the free surface and r is slightly smaller than a. This is due to a resonance 
phenomena being discussed in $ 7 .  

In  figures 6, 7, 8 and 9 the effect of a pitching motion, with 8 = 0.6, is shown. For 
Fr = 0.25 we find that the pitching motion produces both a larger thrust and a larger 
efficiency, than obtained for 8 = 0. For larger Froude numbers the pitching motion 
reduces the thrust but increases the efficiency. The effect of the free surface is less 
pronounced for 6' = 0.6 than for 8 = 0. The scattered surface waves are much smaller 
in this case, but cannot be neglected. In  figure 9 the effect of choosing different values 
for the locaion of the pitching axis is examined. We see that for Fr = 0.25 and 
b / l  = 0.5, TJT < 1. Also for b/1 = 0, Ts/T < 1. For b / l  = -0.5, however, we find that 
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FIGURE 9. Values of thrust us. &/g for various values of pitch axis. Foil moving in heaving and 
pitching motions in calm water. -, T/pgh2; ..., T,/pgh2. 0 = 0.6, b / l  = -0.5,0,0.5 (a) Fr = 0.25, 
( b )  Fr = 1. 

T J T  % 1 for moderate values of a21/g. This suggests that for negative values of bll ,  
the possibility for stall is large for small Froude numbers. For Fr = 1, T,/T < 1 for 
all shown values of a21/g. Similar results were obtained by Lighthill (1970) for a foil 
oscillating in an unbounded fluid. 

6. Discussion of the results. Incoming waves 
6.1. General 

We consider next a foil oscillating in incoming waves. The frequency of encounter of 
the waves equals the frequency a of the foil motion. The incoming wave elevation 
may then be written 

where a, is the wave amplitude and k, the wavenumber. The arbitrary phase angle 
between the wave and the foil oscillation will be taken into account in the expression 
for the foil oscillation (6.5). Furthermore, the + sign is applied for k, = k,, k, and the 
- sign for k, = k,, k,. The complex velocity potential corresponding to yo reads 

7, = a,sin(k,x+d), (6.1) 

f o ( z )  = &a, - (l+ij)exp(-ik,z), (:J 
where S = - 1 for k, = k,, k,, k, and 6 = 1 for k, = k,. The former waves are travelling 
in the positive x-direction in the fixed frame of reference (in which the foil is moving 
with velocity U )  and will be called following waves. The latter wave is in this frame 
of reference moving in the negative x-direction and will be denoted as the head 
wave. An incoming following wave is a k, wave if 0 < k, < 0.25g/U2, a k, wave 
if 0.25g/U2 < k, < g/U2,  or a k, wave if k, > g/U2. The incoming wave will be 
transmitted by the foil. In  addition, three new waves are set up for r < a, and for 
r > a one new wave is generated. 

The energy equation is readily obtained from (5.6) and (5.17) by adding the energy 
contribution from the incoming wave, Po, say, on the left-hand side. The energy 
equation then takes the form 

P+P, = TU+E.  (6.3) 
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By the same reasoning as in $ 5 ,  we find that 
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Po = E,Ic,-UI, 

where E, = ipga;, cg = -t(g/k,)i for the head wave (k4 wave) and cg = +(g/k,)i for 
following waves (kl, k,,  k ,  wave). It is noted that for given P (for example P = 0), 
(6.3) gives the thrust T by the far-field quantities alone. We have not succeeded in 
obtaining a similar expression for T by applying the momentum equation. 

The effect of long incoming waves, i.e. waves for which k, I 4 1 ,  is essentially only 
to introduce an extra heave motion, also when the heave oscillation of the foil and 
the wave motion are completely out of phase. To see this we rewrite the expression 
for the foil motion in a form slightly different to (5.1) 

[(x,t) = Rej[h+ja(x-b) exp ( j ~ ) ] e x p  (jat+j$).  (6.5) 

Here $ is the arbitrary phase angle between the heave motion of the foil and the 
wave motion. x is a not yet specified angle. If x is different from zero, we see that in 
the representation (6.5) the heave and pitch motions are not 90" out of phase, as was 
the case in the form (5.1). The right-hand side of the governing integral equation 
(3.32) is only dependent on the value of the vertical velocity acjJay a t  the foil (see 
(3.22), (3.14) and (2.7)). We obtain from (2.7), (6.5), (6.2) and (2.12) that 

exp (jx) + jC;, Gexp ( & j k, x- j$)] exp (jvt + j$)}, 

where w 
0- 

6, = a,-exp (-/cod). 

For ko I -% 1,  we may replace exp ( f. jk, x) with 1. Furthermore, we introduce h and 
6 defined by 

h+jd,Sexp (-j@) = i exp (j&), 

i = (h2 + 6; + 2h6,6 sin +):. 

(6.8) 

(6.9) with 

Now specifiying x by x = 6 ,  (6.10) 

we find that for long incoming waves the boundary condition a t  the foil is 

!% = Rej{jO-(A--+ja(x-b) U a  . exp (j&+j$+jvt) aY 0- 
(6.11) 

Replacing 6 with h (6.11) is, apart from an  unimportant time phase $+$, identical 
to the vertical velocity obtained from (5.1). We thus find that the two motions 
represented by (5.1) and (6.11) have, according to (3.32) the same values of K .  A 
straightforward generalization of the feathering parameter defined in 5 5 is now 

i = a U / v i ,  (6.12) 

being valid alsq for long incoming waves. We notice that the effect of long waves is 
to change h to h and the feathering parameter to the form (6.12). The location of the 
pitch axis, given by b, is however not changed. The definition (6.12) of the feathering 
parameter for incoming waves is quite different from the definition given by Wu 
(1972). 

We may now conclude that T/pgi2 is independent of Ci,/h and the phase angle 
$ for long incoming waves. I n  other words, the thrust may in this case be obtained 
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FIGURE 10. Values of thrust T/pgxz  and power P/pgf iU  us. &/g. -, foil oscillating in calm 
water. ---, foil oscillating in incoming head waves, 180" out of phase with the wave motion ($ = 
in) and a,/h = 1. ..., foil oscillating in incoming head wqves, 90" out of phase with the wave motion 
($ = 0) and d,/h = 1 ,  d/Z = 1, Fr = 0.25. (a)  and ( b ) :  B = 0, (c) and ( d ) :  6' = 0.6, b/Z = 0. 

by stvdying the oscillation of a foil in calm water by applying the same values of h 
and t9 in the two cases. The same conclusion is obviously not true for the power 
P/pgh2U. To exaFine the bebaviour of the thrust and power more closely we display 
in figure 10 T/pgh2 and P/pgh2U as functions of u21/g without making any assumption 
as to the wavelength of the incoming wave. The thrust and power for the foil 
oscillating in calm water and the foil oscillating in incoming head waves are shown 
in the figures. The latter are either 180" or 90" ou t  of phase with the foil oscillation, 
corresponding to yk = in and yk = 0, respectively. &,/h = l , B  = 0,0.6, d / l  = 1, bll  = 0 
and the Froude number is 0.25. In figure 11 the corresponding curves for incoming 
following waves (k, waves) are displayed and in figure 12 the curves for incoming 
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FIGURE 11. Same as figure 10, but foil oscillating in incoming following k,  waves. ---, $ = -in, 
&,/h = 1. ”., 1c. = R, ci,/h = 1. 

head waves for Fr = 1 and 8 = 0.6. We see that the three cases considered, oscillation 
in calm water and oscillatjon with two different incoming waves, give approximately 
the same curves for T/pgh2 when k, 1 is less than about 0.5. Furthermore, we see from 
figures l O ( b )  and 11 ( b )  that in pure heave the necessary power is considerably 
lowered in incoming waves. For incoming waves 90” out of phase with the foil 
oscillation the necessary power is close to zero and even negative. 

In the general case, with incoming waves of all wave numbers, the display of the 
results becomes very complicated due to the large number of parameters in the 
problem. It also turns out that the solution is very sensitive to variation in several 
of the parameters. We shall therefore restrict ourselves to considering a foil moving 
in an incoming wave field without oscillating. The power P is then zero. In figure 13 
are displayed values of the thrust due to incoming head waves and following waves 
for different values of the Froude number. We see that for following waves the picture 
is rather complicated, essentially due to the influence of r = a. For head waves the 



2 

T 
P X  

1 

0.8 

TU - 
Po 

0.4 

Propulsion of a foil moving in water waves 41 1 

k, I k4 I 

0.8 
4 Fr = 0.25 (a) 1 '-\ 1 (b)  

Fr = I' \ Fr = 1 
- I  \ 

TU I \ 

Po :'**.I \ 

F r =  1 

- I 

I \ - 

- 

.... . .  -. . 
;/- - <*.. 
-\.#& I 

\ '. ' I  "a. 

0.38 0 0.23 0.38 0.51 
2 

P 
Pi%= 

1 

...* ...' 0' 

0 0.5 1 .O 1.5 0 0.5 1 .o 1.5 

f l v g  f1211g 
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FIGURE 13. Thrust Tlpga; vs. wavenumber of incoming waves. No vertical motion of the foil. 
d / l  = 1. -, Fr = 0.25; ---, Fr = 1; ..., Fr = 5 .  (a )  Head waves, ( b )  following waves. The small 
arrows denote the occurrence of 7 = $. 
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thrust is independent of the Froude number for E ,  1 > 0.7. Figure 14 shows the value 
of TUIP, which, since P = 0, is the part of the wave energy power utilized for 
propulsion. The figures show that the largest amount of wave energy, up to 75%, 
may be utilized by a foil moving in following waves. 

6.2. Application on the propulsion of a ship by a foil propeller 

As a practical example of the theory we shall consider the propulsion of a ship by a 
foil propeller. We assume that the foil has a large aspect ratio so that by using the 
strip-theory approximation we may apply our two-dimensional theory. The ship is 
advancing with a speed U in regular waves. Due to the waves the ship, and thereby 
the foil, will undergo heaving and pitching motions with a frequency CT equal to the 
frequency of encounter. The oscillatory motion of the foil as well as the motion of the 
wave field relative to the foil will produce a forward thrust on the foil and thereby 
a forward thrust on the ship. We shall compute this thrust and the speed of the 
ship, U .  

It is assumed that the heave motion of the ship is of the same order of magnitude 
as the amplitude of the incoming waves. This is true for both incoming head waves 
and incoming following waves, provided that the wavelength of the incoming wave, 
A,, is equal to or larger than the ship length L (Newman 1978; Wachnick & Zarnik 
1965). Furthermore we assume a foil arrangement such that the foil moves 
downwards when the wave field velocity is upwards, i.e. $ = in for incoming head 
waves and $ = -in for incoming following waves. 

We denote the thrust acting upon the foil by 

T' = T B ,  (6.13) 

where T is the sectionwise thrust and B is the span of the foil. The latter will be 
assumed equal to the ship beam. For constant forward speed, T' must balance the 
total wave and viscous drag on the ship. The wave drag has two components which 
can be treated separately, viz. the drag due to the steady wave pattern generated by 
the ship, the wave resistance, and the added resistance due to scattering of incoming 
waves. The viscous drag is mainly frictional drag. The sum D of the drag due to the 
wave resistance and the frictional drag may be written in the form 

D = $C,SU2, (6.14) 

where C, is the drag coefficient and X is the wetted area of the vessel. A reason- 
able value of the drag coefficient for values of U/(gL) i  less than about 0.3, i s  C, = 
2.5 x (see e.g. Newman 1977, p. 30). We approximate the wetted area of the 
vessel by the area of a half immersed circular cylinder with diameter B and length L,  
i.e. X x inBL. 

The added resistance D, for a ship moving in head waves is discussed by Faltinsen 
et al. (1980) and may be written 

D, = C,pga: B 2 / L ,  (6.15) 

where C,  is a dimensionless function of U / ( g L ) i  and A,/L. The maximal value of 
C, ( 6) occurs for A,/ L x 1. For longer or shorter waves C, rapidly becomes smaller 
than 2. For a ship moving in following waves little is published about the relevant 
values of C,. It is known that for very small values of U ,  C, is negative. It seems 
reasonable that C,  is small for small and moderate values of U/(gL) i .  
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c 2 1 / g  TlPga: C, U 

Head waves 0 .17  0.75 2 16an gIL 

Following waves 0.047 0.12 0 Ban glL 

TABLE 1 .  Values of Tipgat, C, and U for B / L  = i, kn l  = 0.1, d / l  = 1, U/(gl)a = I ,  4 = 0, h/a,  = 1 

Balance between T' and D + D, gives 

or approximately 

(6.16) 

(6.17) 

Let us furthermore assume that B/L = b, d / l  = 1, 8 = 0, hla, = 1,  U(g1); = 1 and 
k,l = 0.1. We set C, = 2 in head waves and C, = 0 in following waves. Values of 
T/pgai are obtained from the computations in $5 (since k , l 4  I ) .  Table 1 
demonstrates that the ship will move twice as fast in head waves as in following 
waves. If the ship length L = 40 m and the amplitude of the incoming head waves 
a, = 0.5 m, we find that U x 4 ms-l x 8 knots. With U x 4 ms-' and U / ( g l ) t  = 1, 
the half chord length is 1 = 1.6 m. Hence, L/1= 25, and k, = 0.1 corresponds to 
h,/L = 2.5. 

7. Comparison with experiments and discussion 
The only experiments we know about relevant to the present theory, were 

performed by Isshiki et al. (1984) (also published in part as report, Isshiki & 
Murakami 1983). Five of their experimental series are performed in set-ups similar to 
our theory, the other experiments are performed under other conditions. It turns out, 
however, that  the amplitudes of the incoming waves in most series are rather large, 
having a magnitude close to the distance between the foil and the free surface, which 
leads to strong nonlinear effects. Therefore only one of the experimental series is 
directly comparable with the theary. The experiments are carried out in a tank 
25 m x 1 m x 0.71 m (length x breadth x depth) with a wavemaker a t  ane end of the 
tank. The foil is suspended by a carriage which moves horizontally with small 
resistitnee. The springs are stiff, so that the foil osdlations due to the incoming waves 
are small. Aa prelimipary experiments the carriage and fail are pulled with constant 
speed in calm water, and the resistance of the system is determined as a function of 
speed. Then waves are incident upon the foil, which now moves forward solely due 
to the thrust caused by the waves ('free-running test '). The mean horizontal velocity 
is measured, and the thrust balancing the resistance is obtained by applying the 
results from the preliminary experiments. 

We have simulated the experiments using the given data for the experimental set- 
ups. One problem is that the theory is valid for infinite depth whereas in the 
experiments the ratio of incoming wavelength to fluid depth may be up to about five. 
I n  the comparison we have adjusted the observed wavelength of the incoming wave 
so that the intrinsic frequency w is the same in theory and experiments. This 
adjustment leads only to minor corrections. The amplitudes of the incoming 

14 2 
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FIGURE 15. Thrust T/pghi vs. wavenumber k,l of incoming head waves. (a) 0.05 < Fr < 0.17; (b) 
0.15 < Fr < 0.38. 0, thrust obtained from experiments. Isshiki et al. (1984), figure 32; (a )  
d/Z = 0.8, (b) d / l  = 0.3. 0, approximate theory, Wu (1972). +, present theory. 

observed waves have a considerable scattering. In  the comparison we have chosen 
the mean value of the amplitudes. 

The thrust obtained for incoming head waves by the present theory and the 
experiments is presented in figure 15 (a). The thrust obtained from simulations of the 
experiments by Wu’s approximate theory (1972) are also shown. The submergence 
of the foil is d / l  = 0.8 (in the experiments 1 = 20 cm and d = 16 cm). The amplitude 
of the incoming waves varies between 3.8 cm and 5 cm, i.e. a / d  x 0.3. We find that 
the agreement between experiments and theory is good in most cases. For the lowest 
wavenumbers there are systematic discrepancies It is reasonable to suppose that the 
discrepancies are due to nonlinear effects which are not accounted for in the theory. 
To examine this more closely we have computed the values of $ I yo 1 / U  for the cases 
displayed in figure 15. It is found that this quantity, which in the theory is assumed 
much smaller than unity, varies from about 1 to 13. It is especially large for 
k, l  < 0.5, and explains the disagreements for these wavenumbers. A large value of 
$ I yo 1 / U  means that the linearized modelling of the vortex wake is not valid, and 
that the Kutta condition a t  the trailing edge cannot be applied. 

Figure 15(b) shows the results for one of the four series of experiments where the 
foil moves very close to the free surface. The incoming waves here are head waves and 
the submergence of the foil is d = 6 cm ( d l l  = 0.3). In  this case a /d  z 0.8 and we 
expect large nonlinear effects. Somewhat surprisingly, there are fairly good 
agreements between the theoretical and experimental results for moderate values of 
the wavenumber. Actually, in this and three other cases where the foil moves very 
close to the free surface, the theory and the experiments agree fairly well when, in 
addition to I yo I / U  being of order unity, the computed influence of the foil on the 
wave field is relatively small. Since a, and a3 are close to zero in all the experiments, 
the latter means that the amplitude of the reflected wave is small compared to a, and 
the amplitude of the transmitted wave is close to a,. 

For a small Froude numbers and the foil sited very close to the free surface, we find 
a kind of resonance. This is experienced by the thrust and the reflected wave 
amplitude varying rather rapidly close to certain values of the wavenumbers for the 
incoming waves. A detailed numerical study has revealed that resonance behaviour 
takes place for Froude numbers less than about 0.3 and d / l  less than about 0.5. It 
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is also found that this resonance is most pronounced when U -+ 0. The lowest 
minimum of the reflected wave amplitude then occurs for k,  1 about 3 (d/Z = 0.3). For 
increasing Froude number this minimum occurs for decreasing wavenumber. The 
experiments show no sign of this resonance, which is probably due to  strong 
nonlinearity . 

Isshiki (1982) has also prepared a simplified theory for taking into account the free 
surface. He applies the formulae in theory of Wu (1972), where the free surface is not 
taken into account, to calculate the lift and moment acting upon the foil. He then 
replaces the foil by two dipoles, sited a t  the centre of the foil, of strength equal to the 
calculated lift and moment, and calculates the amplitude of the waves generated by 
the dipoles. The momentum equation is then used to obtain the impact of the waves 
on the thrust. Isshiki has applied his theory for a deeply submerged foil, d / l =  3, 
which is moving without oscillation in incoming waves. His theory and our theory 
agree for very long incoming waves. However, for k,  1 > 0.1 the discrepancy between 
the two theories is more than 100%. For smaller values of d/Z the disagreement is 
most likely larger still. 

Appendix A: The P(x)  function 

P ( x )  is defined by (3.30) as 
The P(x) function in $ 3  may be considerably simplified for numerical evaluation. 

where I ? ( x ,  6 )  is defined in $3 in form of a double integral. We consider the first part 
of (A l ) ,  which we shall call Po (x). After some elementary algebra we find that Po(x) 
may be written 

Po(x) = - - exp (jkx) [xA, (k) - (Z2  - 2) A ,  ( k ) ] ,  (A 2) j 
lcn 

where 

Applying the fact that the Hankel function of the second kind and of order zero for 
positive argument has the integral representation (Watson 1922, p. 180), 

H p  ( x )  = - dt , 

Al(k) = A,(O) +in exp ( -  jux)Hh2) ( u l )  du, (A 5 )  we obtain, 

From (A3)  

a 
A ,  (0) = --A, ax (0). (A 8) 
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Introducing (A 5-A 8) into (A 2), applying a partial integration and manipulating 
with Hankel functions we finally obtain 

Po(%) = -exp 2 (jkx)(12-x2)i[jx-arctan(--)]+~~z)(kZ) l + x  h x 1-x 

-~jxH~z)(IcZ)-~(Z2-x2) exp (jkx) exp (-jux)Hr)(uZ)du. (A 9) I 
The last term in (A l ) ,  PI ,  may by changing the order of integration be written 

From (3.24) and (3.3), K(q,[ )  may be written 

(A 12) 
?- jd  exp (j  k, u) where Fn(T-jd,5-jd) = exp (-jknT-knd) du. 

C,,  k, and T are defined in $3 and a bar denotes complex conjugate. Changing the 
order of integration and applying partial integration, we obtain 

k4 F3 (7 - jd, - 1 - jd) - - F4 (7 - jd, - 1 - jd) 
k4-k 

Here v is given by 2, = jk(v+Z-2jd), (A 14) 
and the exponential integral El (v )  is defined in Abramowitz & Stegun (1972, p. 
228). 

Appendix B. The wave amplitudes in the far field 
The wave amplitudes in the far field are derived from the complex velocity field 

(3.10) dfo aG 
dz 1, u-iv = - + y(E)G(z,E-id)dt,  

for x -+ f 03. Heref, ( z )  is the complex potential for the incoming wave and G(z ,  zo)  is 
the vortex potential defined in $3. On the interval (-1, 1) aG/az reduces to terms of 
the form (3.4) which for x + _+ 03 become 

' exp (ik,u) 
F, ( z ,  zo)  = exp ( -ik, z )  du ( z +  f 03, n = 1, 2, 3, 4). (B 2) 

z - i m  

Here C,  and k, are defined in 93. (B 2) is easily evaluated by contour integration. 
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The contribution from the wake is 

aG 
lim yell exp(j&)-(z,[-id)df[. aZ x- & m 

The terms of the form (B2)  are evaluated by changing the order of integration, 
applying partial integration and contour integration. The remaining part of (B 3), 
due to terms of the form l/(z-zo)  and 1/(z--Zo), are found by contour integration. 
These terms tend towards zero for x + 00. For x + - co they are non-zero. They give, 
however, no contribution to the vertical displacement of the free surface. The final 
form of (B 1) is obtained by using (3.20). From this form the expressions for the 
amplitudes as given by (5.3) and (5.4) follow immediately. 
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